Roll No. \square

B TECH

(SEM II) THEORY EXAMINATION 2018-19

ENGGINEERING PHYSICS

Time: 3 Hours
Total Marks: 80
Noter.AttemaltSectiohfsequiaremis sidgtatheahooseritably.
SECTIOAN
1.
a. Write the properties of matter waves.
b. Derive an expression for the wavelength of matter waves.
c. Give Physical significance of wave function.
d. Define nanoscience and nanotechnology.
e. Distinguish between para, dia and ferromagnetic materials.
(For Mechanical)
f. What are Bravais lattices? Illustrate them
g. Explain the term internal energy of a system.
h. What are ultrasonic waves?

(For EC/EI/EN)

f. Define Hall Effect.
g. Define mean free path.
h. What are connectors and couplers
(For CS \& IT)
f. Explain Positive and Negative Environmental Impacts of Solar cell.
g. State two applications of it.
h. Differentiate between RAM and ROM

What is a spatial filtefing?
SECTION B
2. Attempt any three oit ine following:
a. Calculate energy difference between the ground state and first excited state for andectron in one-dimensional rigid box of length $1 \AA$, mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ and $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}$.
b. For a specimen of superconductor, the critical fields are $1.4 \times 10 \quad{ }^{5}$ and 4.2×10^{5} A / m respectively for temperature 14 K and 13 K respectively. Calculate the transition temperature and critical fields at 0 K and 4.2 K
c. The following data refers to a dielectric material $\varepsilon_{r}=4.94$ and $n^{2}=2.69$ where n is the index of refraction. Calculate the ratio between electronic and ionic polarizability for this material.
(For Mechanical)
d. X-rays of wavelength $\lambda=0.3 \AA$ are incident on a crystal with lattice spacing $0.5 \AA$. Find the angles at which second and third Bragg's diffraction maxima are observed.
e. Calculate the mean free path of the molecules of a gas in a chamber of $10^{-6} \mathrm{~mm}$ of mercury pressure, assuming the molecular diameter to be $2 \AA$. Take the temperature of the chamber to be 273 K and Boltzmann constant $\mathrm{k}=1.38 \times 10^{-}$ ${ }^{23} \mathrm{~J} / \mathrm{K}$.

(For EC/EI/EN)

d. Find the value of $f(E)$ for $E-E_{f}=0.01 \mathrm{eV}$ at 200 K .
e. A platinum thermometer has a resistance of 100Ω at $25{ }^{\circ} \mathrm{C}$. (a) Find its resistance at $65^{\circ} \mathrm{C}$ if the platinum has a resistance temperature co-efficient of $0.00392 /{ }^{\circ} \mathrm{C}$ (b) If the temperature has a resistance of 150Ω, calculate the temperature.

(For CS \&IT)

d. Hall voltage of 1.0 mV is found to be developed when a sample carrying a current of 10.0 mA is placed in a transverse magnetic field of 0.3 T . Calculate the charge carrier concentration of the sample, given the thickness of the sample along the direction of magnetic field is 0.3 mm .
e. In a N-type semiconductor, the Fermi level is 0.3 eV below the conduction band at 300 K . If the temperature is increased at 330 K find the new position of Fermi level.

SECTION C

3. Attempt any one part of the following:
$8 \times 1=8$
(a) Derive Schrodinger time independent and time dependent wave equations.
(b) Find an expression for the energy state of a particle in one dimensional square well potential.
4. Attempt any one part of the following:
$8 \times 1=8$
(a) Give salient features of BCS theory. Describe briefly the formation of Cooper pairs.
(b) What is buckyball? How buckyballs can be created? State few applications of buckyballs.
5. Attempt any one pariog the following:
$8 \times 1=8$
(a) Obtain an ep pression for the internal field seen by atom in infinite array of atoms rujected to an external field.
(b) Discus, Langevin's theory of diamagnetism. Derive an expression for change of magnetic moment.
(For Mechanical)
6. Attempt any one part of the following:
$8 \times 1=8$
(a) What do you mean by interplanar distance? Derive a relation between interplanar distance and cube edge.
(b) Obtain Bragg's law for X-ray diffraction in crystals. Show how it can be experimentally verified.
7. Attempt any one part of the following:
(a) What do you mean by Joule-Thomson expansion? Obtain an expression for the cooling produced due to this effect.
(b) Describe and explain the working of the Cenco-Hyvac rotary pump.

(For EC/EI/EN)

6. Attempt any one part of the following:
(a) What do you mean by Fermi level? Prove that the Fermi-level in a intrinsic semiconductor lies midway in the forbidden band i.e $\mathrm{EF}_{\mathrm{F}}=\mathrm{E}_{\mathrm{C}}+\mathrm{Ev} / 2$
(b) What is photovoltaic effect? Explain the principle of a photovoltaic cell.
7. Attempt any one part of the following: $8 \times 1=8$
(a) What is refrigerant? Describe the cooling produced by vapour absorption machine.
(b) Describe the structure of PIN photodiode. Explain its principle and working.

(For CS \& IT)

6. Attempt any one part of the following:
(a) What is Hall effect? Derive an expression for Hall angle
(b) What is a solar cell? Discuss in detail their construction, working and applications.
7. Attempt any one part of the following:
$8 \times 1=8$
(a) What is pattern recognition? Give the different stages in pattern recognition.
(b) What is quantum computing? Explain the difference between classical and quantum computing.
